Structural Health Monitoring for Optimization of Concrete Bridge Management

Tohru Makita, Dr. ès sc. Central Nippon Expressway Co., Ltd. (NEXCO-Central)

Damage on Concrete Bridges to be Detected by SHM										
Damages observed in the components of concrete bridges										
Components	Concrete	Steel (rebar, prestressing tendon)								
Damage mechanism	carbonation, freeze-thaw cycle, alkali silica reaction, fatigue, wearing, shrinkage	chloride attack, fatigue								
Damage	cracking, delamination, spalling, scaling	corrosion, cracking, fracture								
Damage characteristics	# Slowly progress # Damage states understood by hands-on visual inspection	 # Slowly progress # Damage states not understood by visual inspection # Damages to prestressing tendons significantly influence structural integrity 								
Role 3 of SHM										
	Fracture of prestressin	g tendons								
By what methods can it be detected accurately and reliably?										

Experimental Studies								
 Investigation into SHM techniques for detection of fracture of prestressing tendons in prestressed concrete (PC) members 								
✓ Conducted by NEXCO Research Institute								
	Objectives	Experimental tests						
1	Evaluate the validity of modal analysis methods in detecting prestressing tendon fracture	 Forced vibration test of a removed PC girder Cut four of the five strands one after another Examine vibration-damping properties 						
2	"	 Forced vibration test of a PC beam with a single rod Gradually decrease prestressing force in the rod Examine the natural frequency 						
3	Evaluate the validity of acoustic emission (AE) techniques in locating prestressing tendon fracture	 Fifteen AE sensors on a 9 m long PC beam Corrode and fracture three of the five strands Analyze elastic wave propagation 						
4	Evaluate the influence of cement grout on elastic wave propagation in AE techniques	 PC beams with a grouted or ungrouted single strand Corrode and fracture the strand Compare AE peak amplitude 						
		11						

~				F			I D.		222
Э	um	mar	VOI	EXU	епт	enta	IIING	suit	823

- ✓ Vibration-damping properties of the prestressed concrete girder specimen didn't change until 60% of the prestressing steel strands were fractured
- As the prestressing force in the the steel rod decreased, the natural frequency of the prestressed concrete beam specimen also gradually decreased; however, it was 1.3 % reduction at the most
- ✓ Fracture of prestressing steel strands in the prestressed concrete beam specimen was located by installing several AE sensors
- ✓ AE peak amplitude obtained from fracture of a grouted strand was smaller than that obtained from fracture of an ungrouted strand
- ✓ With increasing distance from the location of strand fracture, obtained AE peak amplitude became larger in the case of an ungrouted strand, while it became smaller in the case of a grouted strand

22

