ACI Paper #5

UTSA The University of Texas at San Antonio"	
Effect of Modeling Parameters on CMR	
6 4 3 2 1 0 0.02 0.04 0.06 Drift Ratio	6 4 3 2 1 0 0.02 0.04 0.06 Drift Ratio
ASCE-41 Beams	Ductile Beams
The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249	

UTSA. The University of Texas at San Antoni

Evaluation Platform

- · Opensees analysis program
- Evaluation in E-W direction based on two frames
- Lumped plasticity model
- Modeling parameters for stiffness and plastic deformation adopted from ASCE-41

an at San Ant

UTSA. The University of Texas at San Arr

Conclusions

- Effective stiffness provisions in ASCE-41 resulted in reasonably accurate estimates of the effective period of the building
- ASCE 41 modeling parameters for columns should be revised to address gap between shear-critical and flexure-shear critical columns
- Nonlinear analyses of the building indicate that the CMR for the Northridge ground motion was approximately 1.3